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We consider the convergence behavior of replica-exchange molecular dynamics �REMD� �Sugita
and Okamoto, Chem. Phys. Lett. 314, 141 �1999�� based on properties of the numerical integrators
in the underlying isothermal molecular dynamics �MD� simulations. We show that a variety of
deterministic algorithms favored by molecular dynamics practitioners for constant-temperature
simulation of biomolecules fail either to be measure invariant or irreducible, and are therefore not
ergodic. We then show that REMD using these algorithms also fails to be ergodic. As a result, the
entire configuration space may not be explored even in an infinitely long simulation, and the
simulation may not converge to the desired equilibrium Boltzmann ensemble. Moreover, our
analysis shows that for initial configurations with unfavorable energy, it may be impossible for the
system to reach a region surrounding the minimum energy configuration. We demonstrate these
failures of REMD algorithms for three small systems: a Gaussian distribution �simple harmonic
oscillator dynamics�, a bimodal mixture of Gaussians distribution, and the alanine dipeptide.
Examination of the resulting phase plots and equilibrium configuration densities indicates
significant errors in the ensemble generated by REMD simulation. We describe a simple
modification to address these failures based on a stochastic hybrid Monte Carlo correction, and
prove that this is ergodic. © 2008 American Institute of Physics. �DOI: 10.1063/1.2989802�

I. INTRODUCTION

The replica-exchange molecular dynamics �REMD�
algorithm1 has become a widely used tool for molecular
simulation. The REMD algorithm is an adaptation to mo-
lecular dynamics �MD� of the Metropolis-coupled Markov
chain Monte Carlo �or parallel tempering� algorithm,2 which
enables the crossing of large energy barriers through swap-
ping of parallel simulations at a ladder of increasing tem-
peratures. The REMD algorithm has recently seen wide
popularity for simulations of complex molecules such as
peptides and proteins3–9 due to empirical evidence that simu-
lations equilibrate dramatically faster. Indeed, recent theoret-
ical results for parallel tempering Monte Carlo show that a
range of sampling problems converge exponentially faster
when parallel tempering is applied compared with standard
Metropolis algorithms,10,11 although such speedups do not
necessarily occur for every system.12,13

Although REMD was derived from parallel tempering, a
Monte Carlo algorithm which has certain desirable charac-
teristics, REMD does not necessarily inherit these character-
istics. Chief among these is the ability to generate configu-
rations according to the Boltzmann ensemble, a key
condition for computing experimental observables from
simulation. In this paper we consider convergence behavior
of the REMD algorithm as commonly implemented in bio-
molecular simulation, focusing on certain theoretical short-

comings and their practical implications. In particular, we
emphasize the properties of measure invariance and ergodic-
ity, show that the isothermal dynamics algorithms commonly
used for REMD do not exhibit these properties, and that as a
result REMD using these standard integrators also fails to
exhibit these properties.

After a brief statement of the REMD algorithm, we re-
view necessary and sufficient conditions for dynamical sys-
tems and their integrators to be measure-preserving and er-
godic. We then examine several commonly used and
proposed techniques for the isothermal dynamics required by
REMD and show that all fail to satisfy these conditions. By
proving rigorously these failures, we resolve ambiguity in
the literature stemming from purely empirical studies and
assumptions. We also show that combining these dynamics
via replica exchange does not correct this problem. In some
cases these failures of the underlying constant-temperature
algorithms are known, while in others our results are new;
however, in all cases the impact on the theoretical properties
and practical performance of REMD does not appear to have
been appreciated. We conclude by showing that these failures
can be addressed by the addition of stochastic hybrid Monte
Carlo corrections, and demonstrate the significant practical
ditferences obtained on some simple Hamiltonian systems.

II. REPLICA-EXCHANGE MOLECULAR DYNAMICS

Molecular dynamics simulation of a classical molecular
system of p atoms acting under a potential U�q� involves
numerical solution of the differential system arising from
Newtonian dynamics,14,15
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q̇i =
pi

mi
, ṗi = −

�U�qi�
�qi

. �1�

This system yields trajectories in the phase space X= �q ,p�
�R2pd of configurations q and associated momenta p. For
macromolecules and standard molecular mechanics poten-
tials, the result is a stiff system of tens of thousands of tightly
coupled second-order ODEs, a many-body problem which
cannot be solved analytically.

In practice this continuous time deterministic dynamical
system is solved by numerical integration, yielding a discrete
time deterministic dynamical system. A common choice in
molecular simulation16,17 is the use of the “leap-frog” nu-
merical integrator, so-called because the momenta are calcu-
lated on half timesteps and the positions on full timesteps,

q�t + �t� = q�t� +
p�t + �t/2�

m
�t,

�2�
p�t + �t/2� = p�t − �t/2� + F�q�t���t .

However, limits on the stepsize �t required by the numerical
approximation �2� rarely permit the simulation of macromol-
ecules on time-scales sufficient to observe important confor-
mational changes, such as protein folding, ligand binding,
and complex formation.

Replica-exchange molecular dynamics1 is an application
of the parallel tempering method2 to deterministic molecular
dynamics �MD� simulation, intended to speed up simulations
by enabling the crossing of energy barriers. Both REMD and
parallel tempering run multiple parallel simulations at a se-
quence of increasing temperatures �T0=T , . . . ,Tk� and inter-
mittently attempt to swap simulations between temperatures.
However, where parallel tempering uses stochastic compo-
nent simulations based on Markov chains, the REMD algo-
rithm instead runs multiple deterministic isothermal MD
simulations. Then every r steps, two chains i and j are ran-
domly chosen �or i random and j= i+1�, and the proposed
swap accepted with probability given by the Metropolis ra-
tio,

min�1,
�Tj

�qi,pi��Ti
�q j,p j�

�Ti
�qi,pi��Tj

�q j,p j�
� ,

where �i�q ,p� is the Boltzmann distribution �canonical en-
semble� for replica i at temperature Ti,

�Ti
�q,p� = ZTi

−1e−�1/kBTi�H�q,p�,

�3�

ZT = �
X

e−�1/kBT�H�q,p�dqdp ,

where H�q ,p�=U�q�+�i	pi	2 /2mi is the Hamiltonian given
by the sum of potential and kinetic energies, and kB is
Boltzmann’s constant. The result is a stochastic dynamical
system on X*=R2pdk, whose properties we wish to consider.

III. ERGODICITY AND INVARIANCE IN MOLECULAR
SIMULATION

An important application of molecular simulation tech-
niques in practice, as well as a key step in evaluating and
improving forcefields,6 is the calculation of experimental ob-
servables via ensemble averages,


 f � = �
X

f�q,p���q,p�dqdp .

A critical requirement of a �deterministic or stochastic� simu-
lated molecular dynamical system is therefore that it be er-
godic, namely, that limiting long-run time averages equal
averages over the configurational ensemble,

lim
t→�

1

t
�

0

t

f�q�s�,p�s��ds = 
 f � ,

or in practice, we require for the time-discretized dynamics
given by the iterated mapping S that

lim
n→�

1

n�
k=1

n

f�Sk�q0,p0�� = 
 f � , �4�

for all integrable functions f . If Eq. �4� holds, time-averaged
quantities computed from sufficiently long simulation trajec-
tories can be used to compute thermodynamic properties of
the system such as equilibrium constants and free energies,
transition rates, and other experimental observables.

Ergodicity is often taken as an assumption in molecular
simulation, but we will show that Eq. �4� does not hold for
many simulation techniques in common use. It is important
to note that although the ensemble �3� is completely deter-
mined by the potential �forcefield� U, a dynamical simulation
which fails to satisfy Eq. �4� will not properly generate this
ensemble and therefore not accurately reflect the forcefield.

It is well known18,19 that dynamical systems exhibit such
ergodic limiting behavior if and only if they are both invari-
ant �or measure-preserving�, and irreducible, with respect to
�. A transformation20 S on X is �-invariant if ��S−1A�
=��A� for every A�X, or equivalently, if for any f
�L1���,

�
X

f�x�d� = �
X

f�S�x��d� . �5�

S is irreducible if it can, and eventually does, reach any state
in the system from any other state. If S is both measure-
preserving and irreducible, then it is ergodic and Eq. �4�
holds.20 Formally, S is ergodic on �X ,�� if A�X satisfies
S−1A=A if and only if ��A�=0 or 1; equivalently, for ��A�
�0 then �n=1

� S−nA=X, and for ��A��0 and ��B��0, then
��S−nA�B��0 for some n�1. Informally, invariance
means that the dynamics has � as an equilibrium, and ergod-
icity guarantees the equilibrium is unique and the dynamics
will converge to � from any starting point.20

A. Ergodicity and invariance of replica exchange

Write the discretized dynamics of MD at fixed tempera-
ture T as a mapping on phase space ST :X→X taking posi-
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tions and momenta at time t to new positions and momenta at
time t+�t. Then REMD can be written as a mapping
S*:X*→X* formed as a composition S*=S1

r �S2 where S1 is
a block-diagonal mapping given by the direct sum
S1= � i=1

k STi
, and S2 is the stochastic temperature swap given

by the transition kernel,

S2�x,A� =
1

k2�
i,j

1A��i, j�x���x,�i, j�x�

+ 1A�x��1 −
1

k2�
i,j

��x,�i, j�x�
 ,

where x= ��qT1
,pT1

� , . . . , �qTn
,pTn

�� and we use the transpo-
sition notation �i , j�x to denote the state after swapping con-
figurations between temperatures i and j, which is accepted
or rejected according to the Metropolis criteria,21

��x,�i, j�x� = min�1,
�Ti

�x j��Tj
�xi�

�Ti
�xi��Tj

�x j�
� .

By construction, � ensures the swapping step S2 is reversible
with respect to the joint Boltzmann distribution,

��x� = �
i=1

k

�Ti
�qi,pi� ,

and thus leaves the product measure � invariant. It follows
that the replica-exchange dynamics S* leave ��x� invariant
on the product space Xk if and only if the isothermal dynam-
ics STj

leave �Tj
�q j ,p j� invariant for each temperature Tj. In

Sec. V we show that one simulation method commonly used
for biomolecules fails to do so.

Because Eq. �3� is strictly positive for all T�0, S* is
ergodic if any of the individual STi

’s are ergodic. On the
other hand, if the STi

are reducible for all i=1, . . . ,k, the
combined dynamics may or may not be ergodic due to swap-
ping, the ergodicity of S* must be verified. In Sec. V we
show that two common isothermal dynamics simulation
methods, Nosé–Hoover and Nosé–Poincaré, fail to be er-
godic and that REMD using these methods also fails to be
ergodic. In other words, if the underlying constant-
temperature dynamics associated with individual replicas are
nonergodic, swapping them by replica exchange is unlikely
to fix the problem. In Sec. VI we provide a simple fix for this
problem.

If S* is �-invariant and ergodic, then by Eq. �4� the
individual temperature trajectories �qi

�t� ,pi
�t�� of an REMD

simulation converge to ensemble averages under the constant
temperature �canonical� Boltzmann ensemble for each Ti,
and in particular for T0, the temperature of interest.

IV. HAMILTONIAN DYNAMICS AND SYMPLECTIC
INTEGRATORS

Most of the dynamical systems used in MD and REMD
simulation which we consider satisfy Eq. �5� for the Boltz-
mann probability measure �H�q ,p�=��H�q ,p�−H�q0 ,p0��,
by virtue of forming Hamiltonian systems. A Hamiltonian
system is a differential system of the form

dq

dt
=

�H
�p

,
dp

dt
= −

�H
�q

.

Newtonian dynamics �1� is a Hamiltonian system, with
Hamiltonian H�x�=U�q�+�i	pi	2 /2mi, and the correspond-
ing � is the microcanonical �or constant energy� ensemble.
Any Hamiltonian system conserves its associated Hamil-
tonian H,

dH
dt

=
�H
�q

dq

dt
+

�H
�p

dp

dt
=

�H
�q

�H
�p

+
�H
�p

�−
�H
�q

� = 0,

and, therefore,

�
X

f�q,p�d� = �
X

f�q,p�
1

Z
e−H�q,p�/�kBT�dqdp

= �
X

f�S�q,p��
1

Z
e−H�S�q,p��/�kBT��Js�dqdp

= �
X

f�S�q,p��
1

Z
e−H�q,p�/�kBT��Js�dqdp

= �
X

f�S�q,p��d� .

Therefore, to be �-invariant, S must have Jacobian equal to
unity. Liouville’s theorem states that this holds for any
Hamiltonian dynamics—namely, that Hamiltonian dynamics
are volume �or Lebesgue measure� preserving.22 Note that
often S may not be ergodic on �H, and so from Sec. III still
does not generate the microcanonical ensemble, i.e., does not
satisfy Eq. �4�.

A. Symplectic integrators

A key point is that the properties of Sec. III—invariance
and ergodicity—must hold not only for the theoretical con-
tinuous time dynamical system, but also for the time-
discretized dynamics obtained in practice by application of
numerical integration on a computer. In practice, the numeri-
cal integrators chosen for MD, such as the leap-frog integra-
tor �2�, are chosen to be symplectic,23 a property that implies
phase-space volume preserving. For any �t�0, however,
they only approximately conserve the Hamiltonian H. �The
hybrid Monte Carlo modifications given in Sec. VI corrects
for this.�

It is easily checked that the leap-frog integrator �2� is
volume preserving, by writing

Sa: �q,p� � �q�,p�� = �q,p + F�q��t� ,

Sb: �q�,p�� � �q�,p�� = �q� +
p�

m
�t,p�� ,

with

JSa
= � 1 0

F��q��t 1
� = 1, JSb

= �1 �1/m��t

0 1
� = 1.

However, replica-exchange dynamics relies on isothermal
�constant temperature� dynamics to generate the canonical
ensemble, rather than the microcanonical �constant energy�
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ensemble generated by Newtonian dynamics. Isothermal dy-
namics requires modified Hamiltonians and specialized inte-
grators. We will see that not all of the numerical integrators
used in such dynamics are in fact volume-perserving; while
in other cases the underlying dynamics fail to be ergodic.

V. ISOTHERMAL MOLECULAR DYNAMICS

Replica-exchange molecular dynamics relies on the use
of isothermal �constant temperature� or canonical ensemble
molecular dynamics simulations at each level of the tempera-
ture ladder. The original formulation1 of REMD utilized the
Berendsen heat-bath algorithm24 to achieve isothermal dy-
namics, and this has been standard practice in REMD
simulations.6,25–29 More recently, the Nosé–Hoover thermo-
stat algorithm has also been applied for this purpose.29 We
briefly review these and related methods for performing de-
terministic isothermal dynamics. Our focus is on viewing
these algorithms with respect to the invariance and irreduc-
ibility properties defined in Sec. III; as we will see, all of
these algorithms fail to yield an ergodic replica-exchange
dynamics.

A. Velocity rescaling and the Berendsen heat bath

By far the most commonly used algorithm for constant
temperature MD of biomolecules is the Berendsen heat
bath,24 due to its ease of implementation and availability in
standard software packages.30–32 In this approach, the system
is weakly coupled to a heat bath by rescaling the momenta
after each step to adjust the temperature, at rate proportional
to the difference between current and target temperatures,

dT�t�
dt

=
1

	
�T − T�t�� .

This amounts to convolving the mapping R : �q ,p�� �q ,
p�
with the ��t-discretized� dynamics, where


2 = 1 +
�t

	 � T

T̂�t�
− 1�, T̂�t� = �3p

2
kBT�−1

�
i=1

p
	pi	2

2mi
.

However, it is easily seen �and well known, see, e.g., Ref.
16� that this mapping is not invariant under the canonical
distribution

�
X

f�q�,p��d��q�,p��

= �
X

f�q�,p��
e−H�q�,p��/�kBT�

Z
dq�dp�

= �
X

f�q,
p�
e−H�q,
p�/�kBT�

Z

dqdp

� �
X

f�q,p�d��q,p� .

In addition, the resulting dynamics are clearly not time-
reversible. Thus the Berendsen heat bath approach to isother-
mal MD does not generate the canonical ensemble �although
Morishita33 argues that it approximately preserves certain

properties�. Since we saw in Sec. III that REMD is
�-invariant f and only if each replica is �T-invariant, REMD
fails to generate the canonical ensemble when implemented
via the Berendsen algorithm. Given the extensive use of the
Berendsen heat bath in MD and REMD simulations,1,6,25–29

this is a source of some concern. In Sec. VII, we demonstrate
significant failures of the Berendsen-based REMD algorithm
on examples.

B. Extended Lagrangian methods

1. Nosé–Hoover thermostat

An alternative method for isothermal dynamics based on
an extended Lagrangian was introduced by Nosé,34 and re-
formulated by Hoover.35 This approach has been used as an
alternative to the Berendsen thermostat to generate constant
temperature dynamics for REMD.29 Nosé adds an additional
coordinate s, rescaling time to dt�=dt /s, and introducing the
augmented Hamiltonian,

HNosé = U�q� + �
i

	pi	2

2mis
2 +

ps
2

2Q
+ gkBT ln s , �6�

where s is a time-scale variable with conjugate momentum
ps, Q is a parameter of dimension energy� time2 which be-
haves like a mass for the motion of s, and g is the degrees of
freedom plus one. The equations of motion then become

dqi

dt�
=

�H
�pi

=
pi

mis
2 ,

dpi

�t�
= −

�H
�qi

= −
�

�qi
U�q� ,

ds

dt�
=

�H
�ps

=
ps

Q
,

dps

dt�
= −

�H
�s

= ��
i

	pi	2

mis
2 − gkT�� s .

As with all Hamiltonian systems, these dynamics preserve
the Hamiltonian HNosé,

dH
dt�

=
�H
dps

dps

dt�
+

�H
�s

ds

dt�
+ �

i
� �H

�qi

�qi

�t
+

�H
�pi

dpi

dt�
�

=
�H
�ps

�−
�H
�s

� +
�H
�s

� �H
�ps

�
+ �

i
� �H

�qi
� �H

�pi
� +

�H
�pi

�−
�H
�qi

�� = 0

and Nosé showed that the microcanonical ensemble in this
augmented phase-space yields the canonical ensemble for
�q ,p /s�, independent of choice of Q and the initial value of
HNosé. However, because time is scaled by s which changes
as the differential equation evolves, the system is not conve-
nient for computation. Hoover35 remedied this problem by
modifying the Nosé dynamics to create a non-Hamiltonian
dynamics. The system simplifies to three equations:
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q̇i =
pi

mi
, ṗi = −

�

�qi
U�q� − �pi, �̇ =

1

Q��i

pi

mi
− gkT� ,

�7�

where g=Nf is degrees of freedom of the real system, com-
pared to g=Nf +1 in the Nosé system. Although the Nosé–
Hoover system is no longer Hamiltonian, it conserves the
extended energy,

Eext�q,p,�� = U�q� + �
i

	pi	2

2mi
+

Q�2

2
, �8�

and Hoover35 argues that it also conserves the associated
Boltzmann distribution,

��q,p,�� = Z−1e−�1/kBT�Eext�q,p,��,

by use of the conservation of mass or continuity equation
d� /dt=�� /�t+� · ��u�=0 where u= �dq /dt ,dp /dt ,d� /dt�
is the “fluid” velocity. However, although the Nosé–Hoover
dynamics conserve the density �, they do not preserve the
underlying measure �phase-space volume� and so are not
symplectic. To see this consider limt→0��V�t��− �V�0��� / t
which goes to zero for Hamiltonian dynamics by Liouville’s
theorem,22 but not for Nosé–Hoover dynamics. Let x
= �q ,p� and define gt�x�= �q ,p�+ �q̇ , ṗ�t+O�t2�. Then,

�V�t�� = �
V�0�

det� �gt�x�
�x

�dqdp

= �
V�0�

�1 − �t + O�t2��dqdp

= V�0��1 − �t� + O�t2� .

We can then see that limt→0��V�t��− �V�0��� / t=−�V�0��0, so
the volume of the phase-space is not preserved, as recog-
nized by Hoover.35 But then the Nosé–Hoover dynamics are
not �-invariant, since

�
X

f�x��d��x��

= �
X

f�q�,p�,���
e−�U�q��+�i	pi�	2/2mi+Q��2/2�/�kBT�

ZZ�

dq�dp�d��

=�
X

f�q,p,��
e−�U�q�+�i�	pi	

2/2mi�+Q�2/2�/�kBT�

ZZ�

�JT�dqdpd�

� �
X

f�x�d��x� .

Specialized integrators have been developed for Nosé–
Hoover dynamics simulation. The method of Winkler et al.36

addresses some shortcomings of others and is described in
Appendix A 1, but is also not symplectic. Of greater concern
is that the underlying continuous time Nosé–Hoover dynam-
ics themselves fail to be irreducible, as observed empirically
by Hoover35 and noted by many others.16,33,37 As Nosé–
Hoover has been used in REMD simulation,29 we show in
Sec. V C 1 that REMD using Nosé–Hoover dynamics also

fails to be ergodic; i.e., the stochastic swapping of introduced
by replica-exchange is not sufficient to achieve irreducibility.

2. Nosé–Poincaré Hamiltonian

To circumvent the difficulties which arise from the non-
Hamiltonian nature of the Nosé–Hoover dynamics, Bond et
al.38 constructed a Poincaré time transformation of the origi-
nal Nosé system. The Poincaré transformation of the Nosé
Hamiltonian �6� yields a new Hamiltonian,

H = s�H = s�U�q� + �
i

	pi	2

2mis
2 +

ps
2

2Q
+ gkT ln s − H0� ,

�9�

where �H=HNosé−H0 and H0 is the initial value of H at
time t=0. The resulting Hamiltonian system is then

dqi

dt
=

�H̃
�pi

=
pi

mis
,

dpi

dt
= −

�H̃
�qi

= − s
�

�qi
U�q� ,

ds

dt
=

�H̃
�ps

=
sps

Q
,

dps

dt
= −

�H̃
�s

= �
i

	pi	2

mis
2 − gkT + �H�q,p,s,ps� ,

and H0 is chosen so that initially �H=0. Since this is a
Hamiltonian system, it conserves the Hamiltonian �9� and by
Liouville’s theorem is volume-preserving. Bond et al.38 show
that if the Nosé–Poincaré dynamics are ergodic, they also
generate the correct marginal Boltzmann distribution of
�p ,q� �Eq. �3��. Nosé39 gives an explicit, time-reversible,
symplectic integrator for the Nosé–Poincaré dynamics,
which is used in Sec. VII and described in Appendix A 2.

C. Failure of ergodicity in REMD using isothermal
dynamics

We showed in Sec. V A that the Berendsen thermostat
fails to preserve the Boltzmann measure, and therefore by
definition �Sec. III� isothermal dynamics simulations using
Berendsen, and REMD simulations with Berendsen-
controlled temperatures, fail to be ergodic. In this section we
demonstrate that REMD simulations using both Nosé–
Hoover and Nosé–Poincaré dynamics also fail to be ergodic,
due to reducibility in phase space. Significant attention has
been paid in the literature to empirical evidence of ergodicity
or lack thereof for these methods, including new variants
�chains� introduced to “enhance ergodicity.” Here, we show
rigorously that these methods fail to be ergodic, removing
any ambiguity. The practical impact of these failures are
demonstrated on several examples in Sec. VII.

1. REMD with Nosé–Hoover is not ergodic

To show that replica exchange using Nosé–Hoover dy-
namics fails to be ergodic, we first demonstrate that a single
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Nosé–Hoover dynamics fails to be ergodic. This was ob-
served by Hoover35 and has since been noted by many
others.16,33,37

Lemma 5.1: The Nosé–Hoover differential system (7)
with unbounded potential energy �U�q�� is not ergodic under
the Boltzmann measure.

Proof: Define the phase-space subsets,

A = ��q,p,��:U�q� + �
i

	pi	2

2mi

 a,

Q�2

2

 b� and

B = ��q,p,��:U�q� + �
i

	pi	2

2mi
� a + b� ,

for some constants a, b, and note that A and B both have
positive Boltzmann measure. Then Nosé–Hoover dynamics
cannot reach A from B, since the mapping SNH preserves the
extended energy �8�, and so for any �p ,q ,���A and n�1
we have

Eext�SNH
−n �p,q,��� = U�q� + �

i

	pi	2

2mi
+

Q�2

2

 a + b ,

and since Q�2 /2�0, we have ��B�SNH
−n A�=0. �

We can now show that REMD using Nosé–Hoover dy-
namics fails to be ergodic, by showing that for any set of
initial configurations ��qTi

0 ,pTi

0 ,�Ti

0 ��, there exists a set B with
�Ti

�B��0 that no trajectory can reach.
Theorem 5.2: REMD using Nosé–Hoover dynamics with

unbounded potential energy �U�q�� is not ergodic under the
Boltzmann measure.

Proof: Given any set of initial configurations �xTi

0

= �qTi

0 ,pTi

0 ,�Ti

0 ��i=1
k , let a=maxi�U�qTi

0 �+� j	pTi,j

0 	2 /2mj�,
and b=maxi�Q��Ti

0 �2 /2�. Define sets A= �x :Eext�x�
a+b�
and B= �x :U�q�+ ��i	pi	2 /2mi�a+b�. Then xTi

0 �A for all
Ti, and by Lemma 5.1 the Nosé–Hoover mapping STi

, at any
temperature Ti cannot reach B from A since �Ti

�STi

−nA�B�
=0 for all n. But the temperature swap S2 does not change
the value of Eext for any configuration, since Ti does not
appear in Eq. �8�. Now define sets A*= ��xTi

�i=1
k :Eext�xTi

�

a+b∀i� and B*= ��xTi

�i=1
k :U�qTi

�+ �� j	pTi,j
	2 /2mj �a

+b∀ i�. Then �xTi

0 ��A*, and neither the Nosé–Hoover dy-
namics nor the temperature swap enable any chain to move
from A to B, so ��B*�S*−nA*�=0 for all n. �

2. Nosé–Hoover chains

As mentioned in Sec. V C 1, the failure of Nosé–Hoover
to be ergodic is well known. Martyna et al.37 introduced a
modification called Nosé–Hoover chains, which adds on M
chains so that the conserved quantity becomes

�
i=1

p
	pi	2

2mi
+ U�q� + �

i=1

M
Qi�i

2

2
�10�

where mi, Qi�0 for all i. However, although the addition of
the �i’s increases the range of accessible potential energies
�adding REMD replicas has a similar effect in this regard�,
this range remains bounded by the initial values of the �i’s
and pi’s.

Corollary 5.3: Nosé–Hoover chains as defined by Mar-
tyna et al.37 are not ergodic.

Proof: The sum defined by �i=1
M �Qi�i

2 /2� is always posi-
tive if Qi�0 for all i, so the argument from Lemma 5.1
holds. �

Thus, for unbounded energy functions U such as com-
monly used molecular mechanics forcefields, neither Nosé–
Hoover nor Nosé-Hoover chains are truly ergodic, as one can
always find a value of the potential energy that cannot be
reached. In addition if the system fails to be ergodic in this
way, it may fail in others also.

3. REMD with Nosé–Poincaré is not ergodic

Similarly, we will show that the Nosé–Poincaré dynam-
ics are not ergodic, and that this implies that REMD using
Nosé–Poincaré isothermal components fails to be ergodic.

Lemma 5.4: Neither the Nosé–Poincaré method38 nor
the original Nosé method is ergodic on Q�P.

Proof: The Nosé–Poincaré system is Hamiltonian and

thus preserves the Hamiltonian �9� given by H̃=s�HNosé

−H0�. Because H0 is a constant chosen such that the initial

value of H̃ is zero, the value of HNosé is also preserved by
Nosé–Poincaré dynamics. The following argument uses only
the preservation of HNosé and so applies to both Nosé–
Poincaré and Nosé dynamics. Define two sets,

A = ��q,p,s,ps�: �U�q�� 
 �; �
i

	pi	2

2mi

 �;

ps
2

2Q

 �; �gkT ln s� 
 �� ,

B = ��q,p,s,ps�: U�q� � V; �
i

	pi	2

2mi
� 1� ,

with V chosen as follows. Note that �gkT ln s�
� implies
s−2
e2�/gkT so for �q ,p ,s , ps��A,

�
i

	pi	2

2mis
2 
 �e2�/gkT � � ,

and so V can be chosen to satisfy V��+�+�+�− �gkT /2�
��1+ln 2−ln�gkT��. Then a dynamics preserving HNosé and
starting from A cannot reach B, because for potential energy
U�q� to increase to V requires

�
i

	pi	2

2mis
2 +

ps
2

2Q
+ gkT ln s 
 � + � + � − V .

To see that this cannot occur, let c=gkT and notice that in the
set B,

�
i

	pi	2

2mis
2 +

ps
2

2Q
+ c ln s �

1

s2 + c ln s ,

since �i	pi	2 /2mi�1. Differentiation shows that f�s�=1 /s2

+c ln s achieves a minimum of �c /2��1+ln 2−ln c� at s
=�2 /c, so for positive s,
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�
i

	pi	2

2mis
2 +

ps
2

2Q
+ gkT ln s �

gkT

2
�1 + ln 2 − ln�gkT��

� � + � + � − V .

Therefore preserving HNosé requires U�q�
V, so set B can
never be reached. �

Note that because Nosé–Poincaré is time-reversible, A
cannot be reached from B either. Looking at the choice of
sets used in the lemma, we see that if we are unable to
choose an initial configuration with sufficiently low potential
energy, it may be impossible to reach the region including
the minimum potential energy configuration with Nosé–
Poincaré or Nosé–Hoover dynamics. So the failure to be er-
godic has significant practical consequences; we show ex-
amples where exactly this phenomenon occurs in Sec. VII.
We conclude this section by showing that, as with Nosé–
Hoover, the nonergodicity at individual temperatures trans-
lates to non-ergodicity of the replica-exchange dynamics as
well.

Theorem 5.5: REMD using Nosé–Poincaré dynamics is
not ergodic for unbounded positive potential energy U�q�
�0.

Proof: Given initial configurations xTi

0

= �qTi

0 ,pTi

0 ,sTi

0 , ps,Ti

0 � for i=1. . .k, define constants

a = max
i

�U�qTi

0 �� ,

b = max
i,j
��

j

	pTi,j
0 	2

2mj�sTi

0 �2 +
�ps,Ti

0 �2

2Q
+ gkTj ln sTi

0 � ,

c = min
i,s
� 1

s2 + gkTi ln s� ,

and define the sets

A = �x: U�q� 
 a; �
i

	pi	2

2mi
+

ps
2

2Q
+ gkTi ln s 
 b� ,

B = �x: U�q� � k�a + b + c�; �
i

	pi	2

2mi
� 1� .

From the proof of Lemma 5.1, we can see that for any indi-
vidual temperature, �Ti

�B�STi

−nA�=0 because the maximum
possible value for U�q� at any temperature is less than a
+b+c. For Nosé–Poincaré dynamics, unlike for Nosé–
Hoover dynamics, the conserved quantity depends on Ti.
However, the total increase in potential energy over all rep-
licas is bounded by k�a+b+c� since �a+b+c� is the maxi-
mum increase at any temperature due to conservation of the
Hamiltonian. Thus for any individual replica the total in-
crease in U�q� is also bounded by k�a+b+c�. Now define the
sets

A* = ��xTi
�i=1

k :U�qTi
� 
 a;�

j

	pTi,j
	2

2mj
+

ps,Ti
2

2Q

+ gkTi ln sTi

 b ∀ i� .

B* = ��xTi
�i=1

k :U�qTi
� � n�a + b + c�;�

j

	pTi,j
	2

2mj
� 1 ∀ i� .

For every Ti, we have �Ti
�B�STi

−nA�=0 and ��B*�S2
−nA*�

=0, so we have ��B*� �S*−nA*�=0�. �

D. Nosé–Poincaré chains

Following the apparent success of chains in improving
the behavior of Nosé–Hoover dynamics, chains have also
been added to the Nosé–Poincaré integrator.38,40,41 Unfortu-
nately, as with the Nosé–Hoover chains, these methods
which aim to “enhance ergodicity”40 do not make the system
ergodic. The general form of the Nosé–Poincaré chains in-
troduced by Laird and Leimkuhler40 have Hamiltonian H
=s�Ĥ−Ĥ0�, where

Ĥ = �
i=1

p
	pi	2

2mis
2 + U�q� + gkT ln s +

ps
2

2Qs
+ f�s,ps,�i,p�i

� .

�11�

Laird and Leimkuhler40 introduce two chain methods, both
using functions f that are strictly positive. However, since

Ĥ−Ĥ0 by conservation of the Hamiltonian, by Lemma 5.4

�Ĥ−U�q�� has a minimum for any initial values of q, p, s,
and ps. Thus, for f positive U remains bounded above, and
the dynamics are not ergodic. More recently, Leimkuhler and
Sweet41 use functions f that can be take both positive and
negative values, so the above proof does not extend directly,
and it remains unclear if the method can be ergodic.

VI. STOCHASTIC DYNAMICS

One alternative to deterministic molecular dynamics
�Eq. �1�� is the use of stochastic dynamics, including hybrid
Monte Carlo42 and Langevin or Brownian dynamics,43 where
the stochastic element corresponds to solvent collisions/
thermal fluctuation. In contrast to deterministic dynamics,
establishing ergodicity of stochastic dynamics is generally
considerably easier due to the probabilistic nature of indi-
vidual transitions.

A. Metropolis correction and hybrid Monte Carlo

An alternative is to use deterministic dynamics simula-
tions to generate proposed moves, which are then accepted
or rejected according to an appropriate Metropolis-Hastings
criteria.21,44 The hybrid Monte Carlo �HMC� algorithm42,45

simulates a Hamiltonian system at temperature T starting
from initial position and momentum vectors �q0 ,p0� via the
following iteration:

�1� Generate a random momentum vector p
�N�0 , �kBT�I3d�, where N�� ,�� denotes the normal
�Gaussian� distribution.

�2� Simulate L steps of MD using a time-reversible
volume-preserving integrator to generate a proposed
new state �x� ,p��
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�3� Accept the proposed state �q� ,p�� with probability �,
otherwise reject and remain at current state �q ,p�,
where ���q ,p� ; �q� ,p���=min�1,exp��H /kBT�� and
�H=H�q ,p�−H�q� ,p��.

The resulting stochastic process is �H-invariant as long
as the dynamics are time reversible and volume preserving,
as has been first argued42,45 and then shown carefully.46 In
addition, the randomization of the momenta guarantees that
the underlying stochastic process is ergodic, as we show be-
low. Here, L must be chosen along with �t to yield an ap-
propriate acceptance rate.

Hybrid Monte Carlo can be viewed as introducing sto-
chastic corrections to the deterministic dynamics, correcting
for the lack of both invariance and irreducibility. The Me-
tropolis acceptance provides an exact correction for the ap-
proximate conservation of the Hamiltonian arising from time
discretization. Similarly, we show below that the randomiza-
tion of momenta turns the reducible deterministic dynamics
into an irreducible stochastic process.

The HMC construction applies for any time-reversible
volume-preserving dynamics. When applied to microcanoni-
cal dynamics it yields the HMC algorithm of Duane et al.42

In Sec. VII, we apply it to Nosé–Poincaré dynamics using
the integrator in Appendix A 2, yielding a �-invariant er-
godic algorithm due to the symplectic property of the Nosé–
Poincaré dynamics and integrator. We also apply the HMC
correction to the Berendsen-thermostat MD, which should be
seen only as a heuristic correction for ergodicity but does not
yield �-invariance, since the Berendsen heat bath is neither
measure-preserving nor time reversible.

1. Ergodicity of hybrid Monte Carlo

Lemma 6.1: Hybrid Monte Carlo using the leap-frog �2�
or the Nosé–Poincaré (Appendix A 2) integrators is ergodic.

Proof: Denote by S the one step integrator mapping, and
let KH denote the transition kernel associated with one step
of HMC,

KH��q,p�,A� = �
P

f�p̃�1A�SL�q,p̃�����q,p�,SL�q,p��dp̃

+ 1A��q,p��

��1 − �
P

f�p̃����q,p̃�,SL�q,p̃��dp̃
 ,

where f denotes the multivariate normal density
N�0 , �kBT�I3d�. Liu46 formalizes the argument outlined
previously42,45 to show that S being time reversible and vol-
ume preserving implies that KH is �-invariant. Thus, we
need only show that KH is also irreducible.

For a �-invariant stochastic process to be irreducible
�and hence ergodic�, it suffices that it be �-irreducible for
some distribution �.47 That is, for every A�X with ��A�
�0, there exists an n such that KH

n �x ,A��0 for all x�X. K
is strongly �-irreducible if this holds for n=1. We show that
HMC is strongly �-irreducible, first for L=1 MD step and
then for general L.

Define the set B= ��q ,p� :a
U�q�
b� and let � be the
uniform distribution over B. Then for any measurable A�B
and �q ,p��X we require KH��q ,p� ,A��0. For S volume
preserving, it suffices that

∀q� � Q, ∃ p̃ � P, such that

S�q,p̃� = �q�,p�� for some p�. �12�

Then for A�B measurable, the set Pq,A
1 = �p :S�q ,p��A� of

momenta that take q to A in one step is also measurable �i.e.,
��Pq,A

1 ��0�, and therefore,

KH��q,p�,A� � �
Pq,A

1
f�p̃����q,p̃�,S�q,p̃��dp̃ � 0, �13�

since f�p�� and ���q ,p� , �q� ,p��� are strictly positive for
H�q� ,p��
�. To see that Eq. �12� holds for the leap-frog
integrator �2�, note that for any q̃�Q we have p̃i=mi�q̃i

−qi� /�t+ �� /�qi�U�q���t /2�. To see that Eq. �12� holds for
Nosé–Poincaré, note that for any q, q̃, and any s, ps we have
p̃i= �mi�q̃i−qi� /�t+ �� /�qi�U�q���t /2��s�1+ ps�t /4Q�2. To
see that this argument remains true for L�1, recall that S is
volume preserving and time reversible, so A measurable im-
plies S−L�A� measurable implies Pq,S−L�A�

1 measurable, and

Eq. �13� holds with S replaced by SL.
Therefore we have KH�x ,A��0 for all x�X and ��A�

�0, so HMC is �strongly� �-irreducible, and therefore irre-
ducible and ergodic. �

B. Langevin dynamics

For comparison, we include another common choice for
stochastic dynamics, namely, Langevin dynamics. Langevin
dynamics is described by the stochastic ordinary differential
equation,

dq = pdt ,

dp = − �pdt − �U�q� + �dW ,

where W is standard p-dimensional Brownian motion, and U
is the potential energy as before. We use the popular BBK
integrator,48

pi�t + �t/2� = �1 −
��t

2
�pi�t� +

�t

2 �−
�U

�qi
+

�

��t
Z�t�� ,

qi�t + �t� = qi�t� + �tpi�t +
�t

2
� ,

pi�t + �t� =

pi�t +
�t

2
� +

�t

2 �−
�U

�qi
+

�

��t
Z�t + �t��

1 +
��t

2

,

where Z�t� is a vector of standard normal random variables.
Because of the random motion introduced by the Brown-

ian motion, Langevin dynamics is irreducible, and has been
shown to be ergodic under certain conditions on U�q� and
for specific integrators.49 However, those conditions are not
satisfied by standard molecular mechanics forcefields and in-
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tegrators, and it remains to be seen if ergodicity can be es-
tablished for these systems. As such the Langevin dynamics
results in Sec. VII are provided only for illustration. Note
that when HMC is applied to Langevin dynamics �L=1�, it
yields an algorithm similar to the Metropolis-corrected
Langevin diffusion algorithm50 which corrects for the nu-
merical error introduced by discretizing Langevin diffusion.
However, it is unclear if this remains measure-preserving
using the BBK integrator.

VII. EXAMPLES

The practical impact of the failures of invariance and
ergodicity described in the previous sections can be illus-
trated on simple examples, where the effect on the entire
ensemble may be visualized directly.

A. Harmonic oscillators and Gaussian mixtures

We first consider two model Hamiltonian systems. The
first has target Boltzmann distribution given by a bivariate
standard normal �Gaussian� distribution,

�1�q� =
1

2��2 exp�−
1

2�2 	q	2� ,

and the second given by a mixture of bivariate normals cen-
tered at �0,0� and �8,8�, respectively,

�2�q� =
�

2��2 exp�−
1

2�2 	q	2�
+

�1 − ��
2��2 exp�−

1

2�2 	q − 8	2� .

In the examples below we use �2=1 and �= 1
2 . Taking kBT

=�2, the potential energy of �1 is given by
U�q�=−log��1�q��=log 2�+ 1

2�i=1
2 qi

2. Combining this with a
kinetic term K�p�= 1

2�i=1
2 pi

2 �with masses m1=m2=1� yields
the Hamiltonian,

H1�q,p� = U�q� + K�p� = log 2� +
1

2�
i=1

2

qi
2 +

1

2�
i=1

2

pi
2,

�14�

and the resulting Hamiltonian system,

q̇i =
�H1

�pi
= pi, ṗi = −

�H1

�qi
= − qi,

is easily recognized as simple harmonic motion in the plane,
with solution

qi = Ai cos t + Bi sin t , �15�

obtained by writing the system as a linear second order dif-
ferential equation q̈i=−qi, where q0= �A1 ,A2� and p0

= �B1 ,B2� are the initial position and momentum, respec-
tively. Although Eq. �15� is the unique solution for �14� with
initial conditions �q0 ,p0�, this solution trajectory does not
reach all points of equal energy from a single initial condi-
tion, but instead traverses a set of points of equal energy
along the curves qi=Ai cos t+Bi sin t. Thus, the Hamiltonian

dynamics fail to be ergodic even under the microcanonical
ensemble.

Similarly, the Hamiltonian for �2 is of the form

H2�q,p� = log�e−�1/2�	q	2
+ e−�1/2�	q − 8	2

�

+ 1
2 	p	2 − log�4�� .

Dynamical simulation of these Hamiltonian systems can
therefore be applied to generate the corresponding Boltz-
mann ensembles �1 and �2.

FIG. 1. Comparison of four dynamics simulation algorithms for the target
distributions �1 �left column� and �2 �right column� defined in text. Algo-
rithms are �top to bottom�: microcanonical dynamics using leap-frog inte-
grator; canonical dynamics using Berendsen heat bath; canonical dynamics
using Nosé–Poincaré integrator; and canonical Langevin dynamics.
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1. Numerical results

To demonstrate the practical impact of the theoretical
results of Sec. V C on commonly used biomolecular simula-
tion protocols, we compare several of the dynamics analyzed
in previous sections for simulating the Boltzmann ensembles
�1 and �2: microcanonical dynamics with a leap-frog inte-
grator, canonical dynamics based on leap-frog with Ber-
endsen heat bath, Nosé-Poincaré, and stochastic Langevin
dynamics. �Nosé–Hoover was not included because, based
on the lack of measure-invariance as discussed in Sec. V, we
consider it to be superseded by NP. Both NH and NP fail to

be ergodic as shown in Sec. V, but NP with its symplectic
integrator is measure invariant, and can thus be made ergodic
by using the stochastic HMC correction—see Sec. VI A.�

Leap-frog �with or without a Berendsen heat bath� and
Langevin dynamics used a step size of 0.1 s, and Nosé–
Poincaré used a 0.01 s step size. Simulations without hybrid
Monte Carlo or replica exchange were run for 100 000 steps,
or 1000 s. Hybrid Monte Carlo proposal trajectories utilized
L=50 steps of the corresponding numerical integrator �leap-
frog, leap-frog with Berendsen with 	T=10, BBK, or the
Nosé–Poincaré integrator �Appendix A 2�. Step sizes and L
were chosen to achieve a HMC acceptance rate between 20%
and 60%. REMD utilized 10 parallel MD simulations, at-
tempted swaps every 100 steps, and ran for 1000 s. Replica

FIG. 2. Replica-exchange dynamics using each of the four dynamics algo-
rithms, for simulating �1 �left� and �2 �right�. Each REMD involves ten
replicas of the corresponding dynamics.
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FIG. 3. The four dynamics algorithms of Fig. 1, augmented with the hybrid
Monte Carlo correction described in text.
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exchange with hybrid Monte Carlo followed each 50 step
trajectory with a Metropolis acceptance, before proposing a
temperature swap.

The results of these simulations are shown in Figs. 1–4.
In each figure, simulations of �1 are shown in the left col-
umn, and �2 in the right. Figure 1 compares microcanonical
MD and canonical MD via a Berendsen heat bath, Nosé–
Poincaré, and Langevin dynamics, for both target distribu-
tions. It is clearly seen that the microcanonical, Berendsen,
and Nosé–Poincaré dynamics are not ergodic. The Nosé–
Poincaré shows clear signs of not being able to reach the
low-energy region near the origin, as indicated in Sec. V C

as a potential consequence of Theorem 5.5. Langevin dy-
namics �without the HMC correction� appears to generate the
target ensemble �1, but fails to cross the energy barrier in �2.

Figure 2 compares REMD simulations, each performed
using the respective isothermal dynamics algorithm for its
�10� individual replicas. Again microcanonical dynamics
generates constant-H trajectories dependent on the initial co-
ordinates; since each replica has distinct random initial coor-
dinates, many additional trajectories are observed, but the
simulation clearly still fails to be ergodic. Similarly, the Be-
rendsen thermostat again fails to generate the correct en-
semble. Nosé–Poincaré appears to remain reducible, re-
stricted to orbits based on initial coordinates. Langevin
dynamics is now able to cross the energy barrier in �2, and
appears to generate both ensembles correctly.

Figure 3 repeats the experiments of Fig. 1 �without
replica-exchange�, but utilizing the hybrid Monte Carlo cor-
rection described in Sec. VI. The microcanonical dynamics
now becomes standard Hybrid Monte Carlo42 and is ergodic
as proven in Sec. VI, thus will generate the correct �1 en-
semble. However, it fails to cross the energy barrier of �2 in
the absence of replica exchange. �Although it is ergodic and
will eventually cross with probability one, this may take a
long time.� The Berendsen thermostat still shows significant
artifacts arising from it’s failure to be measure-preserving.
Nosé–Poincaré actually crosses the barrier of �2, but not
sufficiently easily to equilibrate between the two energy
wells without replica exchange. Langevin dynamics also
fails to cross the energy barrier of �2 in the absence of rep-
lica exchange.

Finally, Fig. 4 shows the results of using the HMC cor-
rection in combination with replica exchange. In this case all
of the algorithms except the Berendsen thermostat are
measure-preserving and ergodic, and able to cross the energy
barrier, so generate the correct ensembles for both �1 and �2.
Note that in these cases, there is no distinction between
“replica-exchange” using the HMC correction, and the origi-
nal parallel tempering algorithm;2 the underlying Markov
chains just happen to be being generated by hybrid Monte
Carlo.42,45 The Berendsen thermostat, which is not measure-
preserving, still clearly fails to converge to the proper en-
sembles as expected.

B. Alanine dipeptide

To demonstrate the implications for a molecular system
under a standard forcefield, we simulated the small Alanine
dipeptide �see Fig. 5� under REMD using the Berendsen
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FIG. 4. Replica-exchange simulations using the four respective dynamics
algorithms, each with the hybrid Monte Carlo correction. The microcanoni-
cal and Langevin algorithms thus become parallel tempering HMC and par-
allel tempering Langevin dynamics, respectively, both of which are measure
invariant and ergodic.

FIG. 5. �Color online� Molecular structure of alanine dipeptide.
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thermostat as commonly done in practice for peptide
simulations,1,6,25–28 and compared the results to those ob-
tained using parallel tempering with hybrid Monte Carlo,
which we have shown guarantees invariance and ergodicity.
Results for Langevin dynamics are also shown for compari-
son; implementations of NH and NP are not available in the
AMBER and NAMD packages used. Alanine dipeptide has been
extensively studied computationally and experimentally; we
choose it here because the molecule has only two internal

dihedral angles, making it possible to ensure adequate sam-
pling quickly, and to easily visualize the generated ensemble.
Each simulation was run without solvent under the AMBER94

forcefield as implemented in the NAMD suite of programs,31

with 1 fs time step and 10 Å cutoff, at a target temperature
T0 of 273 K.

In each case, three Berendsen-coupling REMD, three
HMC parallel tempering, and three Langevin dynamics par-
allel tempering simulations were run, each using ten replicas
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FIG. 6. �Color� Heatmap plots with an overlayed contour plot of the Ramachandran plots generated by the 273 K replica of the REMD simulations of Alanine
dipeptide with Berendsen coupling ��a�–�c�� vs Hybrid Monte Carlo ��d�–�f��. Also shown for comparison are Langevin dynamics ��g�–�i��. Simulations were
started from the three major energy well regions of �� ,�� space ��−75,40� for �a�, �e�, and �g�, �−150,160� for �b�, �d�, and �h�, �60,−50� for �c�, �f�, and �i��,
and run to equilibrium.
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with temperatures distributed exponentially between 273 and
2000 K, and swaps between neighboring temperatures at-
tempted every 100 steps. For all three algorithms, the three
simulations were initialized to three distinct � /� conforma-
tions, representing regions of favorable energy determined
by trial simulations and confirmed in previous studies in the
literature: �� ,��� ��−75,40� , �−150,160� , �60,−50��. Total
running time was 2 ns per replica, well beyond that needed
for equilibration and production phases; convergence was es-
tablished using parallel simulation convergence diagnostics
as described previously.6

The resulting ensembles generated at T0 �273 K� are
shown in Fig. 6. The non-measure-preserving Berendsen
thermostat has clearly altered the target Boltzmann en-
semble, to the extent that an entire energy well ���0� is not
preserved. Note that the Berendsen MD leaves that region
even when initialized there and never returns, indicating that
with REMD it is not a mixing problem. �In the absence of
replica exchange, Langevin dynamics is unable to cross the
barrier between energy wells even in this small system, sam-
pling the ��0 region only when initialized there; plots not
shown.� This example demonstrates that for molecular sys-
tems under standard forcefields, the failure of the commonly
used Berendsen thermostat to be measure-preserving can
have a significant impact on the ensemble simulated. Such
effects clearly compromise attempts to validate and refine
forcefields based on calculation of experimental quantities.

C. High-dimensional systems and irregular energy
landscapes

It is often suggested that ergodicity problems such as
those identified here arise only in small systems with low or
weakly coupled degrees of freedom. However, our theorems

of Sec. V hold for systems of any size. Thus, the belief that
ergodicity failures do not persist in larger systems most
likely simply reflects the difficulty of accurately observing
complex high-dimensional ensembles. This confusion further
emphasizes the importance of establishing formal proofs of
algorithm properties, since empirical observation may fail to
identify non-ergodic behavior in complex high-dimensional
systems.

To demonstrate the persistence of these failures in higher
dimensions and under more complex energy landscapes, we
extended our simulation experiments to two additional target
ensembles. These are �a� a 50-dimensional normal distribu-
tion N�0,�� with random positive-definite covariance matrix
� generated by �=MTM, with M a 50�50 matrix of inde-
pendent N�0,1� random variates, generating a highly coupled
and irregular energy landscape;51 and �b� a two-component
normal mixture in 50 dimensions, also highly coupled due to
two distinct significant energy wells. For each target en-
semble we performed REMD simulations using HMC, Ber-
endsen, and Nosé–Poincaré as before; Langevin results were
identical to HMC and are omitted for space. Although quan-
titative summarization and comparison of high-dimensional
ensembles is difficult in general, the target ensembles here
are chosen to enable this. In particular, the marginal distri-
butions of ensemble �a� are all known �normal� and the
samples can be evaluated for their ability to generate the
correct marginals. Figure 7 shows normal quantile-quantile
plots for the marginal distributions for the first seven degrees
of freedom. Deviations from the diagonal represent depar-
tures from the correct distribution; the “S” shape indicates
that the ensembles generated by the Berendsen and NP algo-
rithms have insufficient samples near the mode �energy mini-
mum� and too many farther away. This indicates the same

FIG. 7. Normal quantile-quantile plots for the marginal distributions of dimensions one through seven, calculated from the ensembles generated by the hybrid
Monte Carlo �first row�, Berendsen �second row�, and Nosé–Poincaré �third row� algorithms for the high-dimensional random-covariance target ensemble
described in the text. Deviations from the diagonal represent departures from the true ensemble, with the “S” shape indicating heavy tails: regions near the
energy minimum are significantly undersampled by the non-HMC algorithms.
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sort of behavior shown in the two-dimensional case of Fig. 2,
which is easier to visualize in 2D but as shown by the q-q
plots still persists in high dimensions as well. For further
comparison, Fig. 8 shows the energy histograms for the en-
sembles generated by the three algorithms. Again it is clear
that the ensembles generated by the Berendsen and Nosé–
Poincaré dynamics differ significantly from the correct en-
semble generated by HMC.

VIII. DISCUSSION

A critical step in improving existing macromolecular
forcefields is the comparison of simulated quantities to ex-
perimental measurements.6,25,27 To make such comparisons
quantitatively, the simulated quantities must accurately re-
flect the ensemble induced by the associated forcefield.6 Here
we have demonstrated that this is not the case for the imple-
mentations of replica-exchange molecular dynamics cur-
rently in common use for biomolecular simulation. Failures
of isothermal molecular dynamics to yield correct ensembles
and ergodic averages, either through failure to preserve mea-
sure or failure to be ergodic, persist when these algorithms
are used as constant-temperature components of replica ex-
change. We have made explicit the theoretical shortcomings
of commonly used algorithms, and demonstrated that these
failures can have significant practical impact on even small
systems. Our results demonstrate the importance of formal
analysis of new simulation methods, where empirical studies
may fail to show such defects simply due to the difficulties in
evaluating correctness of high-dimensional ensembles.

Fortunately these failures come entirely from the use of
deterministic dynamics, and stochastic versions are available
which correct these theoretical and practical shortcomings. In
deterministic dynamics simulations ergodicity must be as-
sumed, and as we have shown this assumption is often incor-
rect; in contrast, for stochastic dynamics ergodicity can gen-
erally be guaranteed by basic theorems of stochastic
processes. Since real macromolecules in solvent behave sto-
chastically anyway, there appears to be little advantage to

using purely deterministic dynamics methods. Arguments
that stochastic thermostats disrupt the ability to simulate dy-
namic properties such as diffusion coefficients are common
�see, e.g., Ref. 16, and most of the isothermal dynamics pa-
pers cited in Sec. V�, but are in our view overwhelmed by
the potential for failures in ergodicity. It is worth emphasiz-
ing that if the system is not ergodic, dynamic properties com-
puted can not be assumed accurate in any case. Moreover,
the use of replica-exchange dynamics to enable crossing of
energy barriers already fundamentally disrupts the dynamics
of the T0 system by configuration swapping. Thus, we see
little advantage to using deterministic replica-exchange mo-
lecular dynamics, over stochastic versions. In the latter case,
REMD reduces to the original parallel tempering algorithm
from which it was adapted.

APPENDIX A: INTEGRATORS FOR ISOTHERMAL
DYNAMICS

1. Nosé–Hoover integrators

Winkler et al.36 modified a time-reversible integrator de-
veloped by Toxvaerd52 for Nosé–Hoover dynamics,
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FIG. 8. �Color online� Energy histograms generated by Berendsen, Nosé-Poincaré, and hybrid Monte Carlo algorithms for two high-dimensional target
ensembles: �a� 50-dimensional normal distribution with random covariance matrix, yielding highly irregular coupling, and �b� mixture of two 50-dimensional
normals. These energy profiles indicate that the ensembles generated by Berendsen and NP deviate significantly from the correct ensemble generated by HMC.
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pi�t + �t� = �pi�t + 1
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However, considering the phase space over the variables
�q ,p ,��, we can see that the mapping is not volume preserv-
ing or symplectic. Define
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so JS
1 for �t�0. Winkler et al.36 also introduced an al-
ternative method, but it is not phase-space volume preserving
for systems with many degrees of freedom such as polypep-
tides.

2. Nosé–Poincaré integrators

Nosé39 gives an explicit, time-reversible, symplectic in-
tegrator for the Nosé–Poincaré dynamics,
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We can see that this integrator preserves phase-space volume
by writing the mappings,
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and noting that the integration mapping JS is a composition JS=JR1
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