Classification using Logistic Regression

Ingmar Schuster
Patrick Jähnichen
using slides by Andrew Ng

Institut für Informatik

This lecture covers

- Logistic regression hypothesis
- Decision Boundary
- Cost function (why we need a new one)
- Simplified Cost function & Gradient Descent
- Advanced Optimization Algorithms
- Multiclass classification

Logistic regression Hypothesis Representation

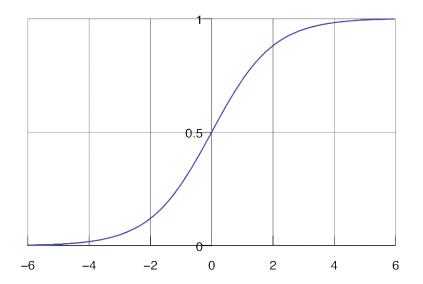
Classification Problems

- Classification
 - malignant or benign cancer
 - Spam or Ham
 - Human face or no human face
 - Positive Sentiment?
- Binary Decision Task (in most simple case)
 - Want $0 \le h_{\theta}(x) \le 1$
 - Data point belongs to class if close to 1
 - Doesn't belong to class if close to 0

Logistic Function (Sigmoid Function)

$$g(z) = \frac{1}{1 + e^{-z}}$$

- maps \mathbb{R} into interval [0;1]
- 0 asymptote for $x \to -\infty$
- 1 asymptote for $x \to \infty$



Sigmoid Function (S-shape) Logistic Function

- Hypothesis
$$h_{\theta}(x) = g(\theta^T x)$$

$$= \frac{1}{1 + e^{-\theta^T x}}$$

Interpretation

$$h_{\theta}(x) = p(y = 1|x, \theta)$$

• Because probabilites should sum to 1, define

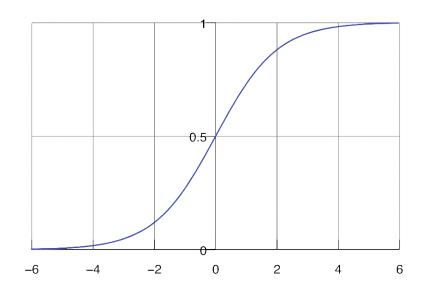
$$p(y = 0|x, \theta) := 1 - p(y = 1|x, \theta)$$

- If $h_{ heta}(x) = 0.7$ interpret as 70% chance data point belongs to class
- If $h_{\theta}(x) \geq 0.5$ classify as positive sentiment, malignant tumor, ...

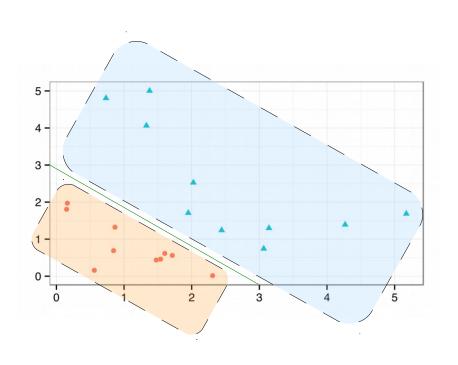
Logistic regression Decision boundary

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

- If $h_{\theta}(x) \geq 0.5$ or equivalently $\theta^T x \geq 0$ predict y = 1
- If $h_{\theta}(x) < 0.5$ or equivalently $\theta^T x < 0$ predict y = 0



Example



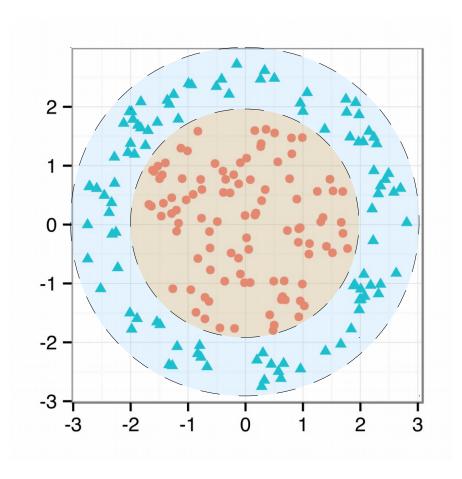
• If
$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

and
$$\theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$

Prediction y = 1 whenever

$$\begin{array}{ccc} \theta^T x & \geq & 0 \\ \Leftrightarrow & -3 + x_1 + x_2 & \geq & 0 \\ \Leftrightarrow & x_1 + x_2 & \geq & 3 \end{array}$$

Example



If

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

and

$$\theta = \begin{bmatrix} -2 & 0 & 0 & 1 & 1 \end{bmatrix}^T$$

Prediction y = 1 whenever

$$x_1^2 + x_2^2 \ge 2$$

Logistic regression Cost Function

Training and cost function

Training data wih m datapoints, n features

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

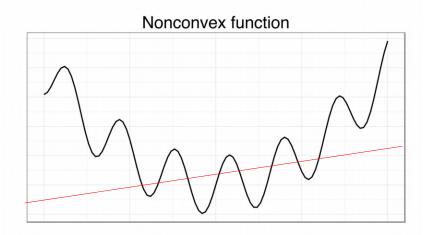
where

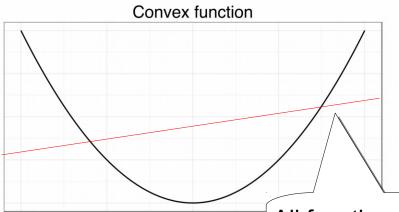
$$x \in \mathbb{R}^{n+1}$$
 with $x_0 := 1, y \in \{0, 1\}$

Average cost

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

Reusing Linear Regression cost





Cost from linear regression

$$Cost(h_{\theta}(x), y) := \frac{1}{2} (h_{\theta}(x) - y)^2$$

with logistic regression hypothesis

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

leads to non-convex average cost

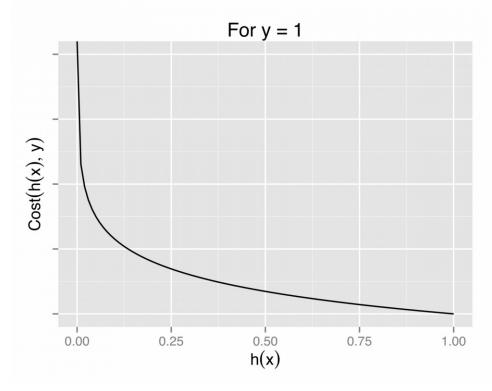
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

 Convex J easier to optimize (no local optima)

All function values below intersection with *any* line

Logistic Regression Cost function

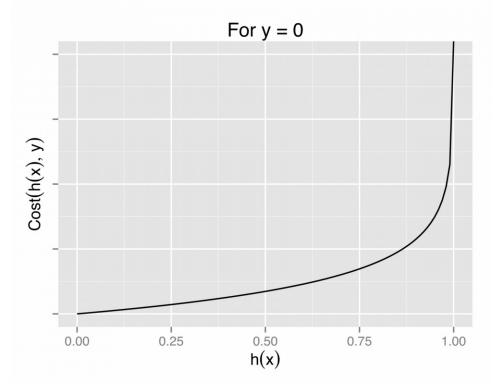
$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1\\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$



- If y = 1 and h(x) = 1, Cost = 0
- But for $h(x) \to 0$ $Cost \to \infty$
- Corresponds to intuition:
 if prediction is h(x) = 0 but
 actual value was y = 1,
 learning algorithm will be
 penalized by large cost

Logistic Regression Cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1\\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$



- If y = 0 and h(x) = 0, Cost = 0
- But for $h(x) \to 1$ $Cost \to \infty$

Logistic regression Simplified Cost Function & Gradient Descent

Simplified Cost Function (1)

Original cost of single training example

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1\\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

 Because we always have y = 0 or y = 1 we can simplify the cost function definition to

$$Cost(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y)\log(1 - h_{\theta}(x))$$

 To convince yourself, use the simplified cost function to calculate

$$Cost(h_{\theta}(x), 1) = -log(h_{\theta}(x))$$

$$Cost(h_{\theta}(x), 0) = -log(1 - h_{\theta}(x))$$

Simplified Cost Function (2)

Cost function for training set

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left(\sum_{i=1}^{m} y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})) \right)$$

- Find parameter argument heta' that minimizes $extit{J:} \mathop{argmin}_{ heta} J(heta)$
- To make predictions given new x output

$$h_{\theta'}(x) = \frac{1}{1 + e^{-\theta^T x}}$$
$$= p(y = 1|x, \theta')$$

Gradient Descent for logistic regression

Gradient Descent to minimize logistic regression cost function

$$J(\theta) = -\frac{1}{m} \left(\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right)$$

with identical algorithm as for linear regression

while not converged:

for all
$$j$$
:

$$tmp_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

$$\theta := \begin{bmatrix} tmp_{0} \\ \vdots \\ tmp_{n} \end{bmatrix}$$

Beyond Gradient Descent - Advanced Optimization

Advanced Optimization Algorithms

- Given functions to compute
 - $J(\theta)$
 - $\frac{\partial}{\partial \theta_i} J(\theta)$

an optimization algorithm will compute $\mathop{argmin}_{\theta} J(\theta)$

Optimization Algorithms

- (Gradient Descent)
- Conjugate Gradient
- BFGS & L-BFGS

Advantages

- Often faster convergence
- No learning rate to choose

Disadvantages

Complex

Preimplemented Alorithms

- Advanced optimization algorithms exist already in Machine Learning packages for important languages
 - Octave/Matlab
 - R
 - Java
 - Rapidminer under the hood

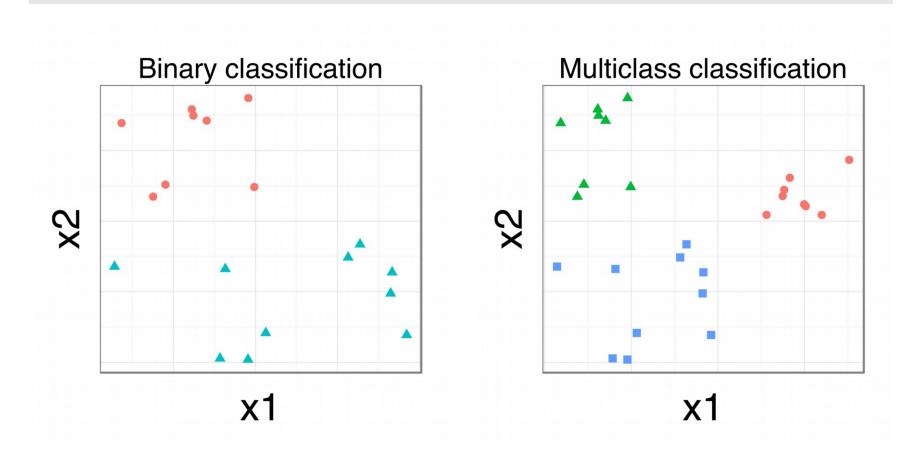
Multiclass Classification (by cheap trickery)

Multiclass classification problems

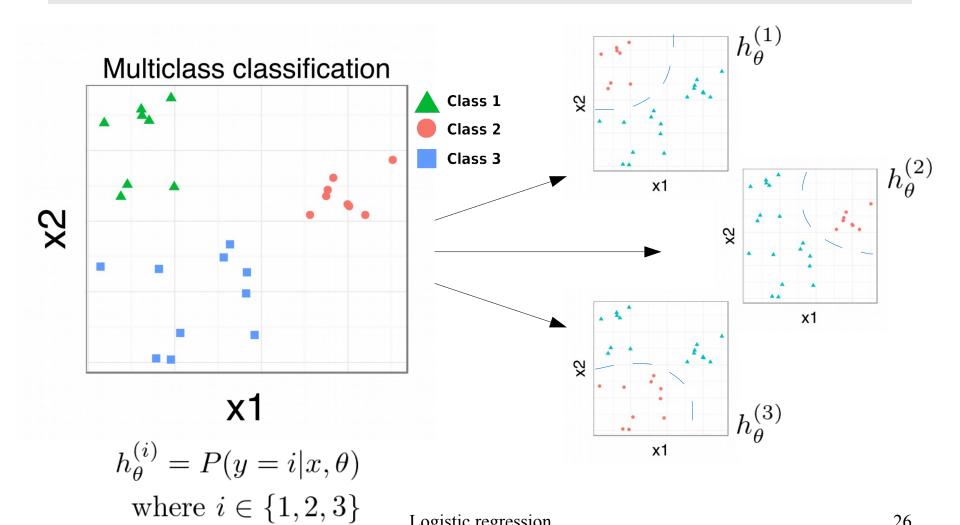
- Classes of Emails: Work, Friends, Invoices, Job Offers
- Medical diagnosis: Not ill, Asthma, Lung Cancer
- Weather: Sunny, Cloudy, Rain, Snow

Number classes as 1, 2, 3, ...

Binary vs. Multiclass Classification



One versus all



Logistic regression

- Train logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict probability of y = i
- On new x predict class i which satisfies

$$\underset{i}{argmax} \ h_{\theta}^{(i)}(x)$$

This lecture covered

- Logistic regression hypothesis
- Decision Boundary
- Cost function(why we need a new one)
- Simplified Cost function & Gradient Descent
- Advanced Optimization Algorithms
- Multiclass classification

Pictures

- Tumor picture by flickr-user bc the path, License CC SA NC
- Lightbulb picture from openclipart.org, public domain