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1 ABOUT GRAPHICAL MODELING

1 About graphical modeling

Graphical modeling was introduced to facilitate the interpretation of Bayesian models by
means of a graphical representation of the model. Dependencies between and hierarchical
structures of the parameters and observations are easily interpreted by inspection of the
graphical model. In this tutorial, we will illustrate that it is not too difficult to construct
a graphical model with LATEX code yourself. This is a tutorial on how to make graphical
models, not on graphical modeling itself. We will explain the basics of graphical modeling
in this section. If you would like more information, there are some other sources available
(Gilks, Thomas & Spiegelhalter, 1994; Lee & Wagenmakers, 2009; Spiegelhalter, 1998).

The structure of a graphical model is based on a bottom-up strategy. At the bottom of
the graph, the observed variables are represented. Then latent parameters are “built” upon
these variables. The physical distance of latent parameters to the observed variables in the
graph symbolizes the level of abstraction of the inference. Quantities on the same horizontal
level should have (more or less) the same level of abstraction, for instance: observed
variables (bottom), individual level parameters, group level parameters and differences
between group parameters (top).

The graph consists of nodes that can represent observed variables or latent parameters.
In a statistical model, all nodes are interrelated through deterministic or stochastic depen-
dencies. In a particular dependency relation, the child node depends on its parent node(s),
visualized in the graph with an arrow pointing from parent to child. A node can be child
and parent simultaneously, when it is involved in several dependency relations. The visual
properties of a node indicate some of its characteristics:

• Observed versus latent. Observed variables (or known quantities that are typical
for the design of the study, such as the number of trials) are represented by nodes
shaded in gray, whereas latent variables are represented by non shaded nodes.

• Continuous versus discrete. Continuous quantities are given circular nodes,
whereas discrete or categorical quantities are given square nodes.

• Stochastic versus deterministic. Nodes that are fully determined by the values of
their parent nodes have a double border, whereas other nodes have only one border.

Example: Assume we roll a die N times and we find K successes, where a succes is
defined as an outcome of six. A simple and realistic model for this type of data is presented
in Figure 1. θ is the proportion of successes in the Binomial distribution and is multiplied
by 100 to obtain θ%, the percentage of successes. Both K and N are observed (shaded) and
discrete (square) quantities, whereas θ and θ% are unknown (not shaded) and continuous
(circular) quantities. The double border of θ indicates that its value is fully determined by
the value of its parent θ%. The only unknown quantity to estimate is θ%, which is given a
uniform prior distribution on the range of 0 to 100. Notice that θ is simultaneously a child
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2 CREATING A GRAPHICAL MODEL IN LATEX

of θ% and a parent of K. It is convenient to assign Greek symbols to parameter nodes and
Latin symbols to data nodes.

K N

θ θ%

K ∼ Binomial
(

θ,N
)

θ = θ%/100

θ% ∼ Uniform(0, 100)

Figure 1: Graphical model for the die example.

In Section 2, we will show how to use LATEX code to create a graphical model. This will
all be applied in Section 3, where a graphical model is created for a hierarchical Bayesian
model for data from a priming experiment.

2 Creating a graphical model in LATEX

Before you start the construction of the graph in LATEX, it is evident that you know how
your graphical model will look like. It helps to compare several pencil-and-paper drafts.
Some important criteria are the following.

• Clarity. The model structure should be clear at inspection of the graph. Avoid
arrows to touch other nodes than the child and parent node that are being connected.

• Symmetry. If possible, replicate substructures that are assumed to have the same
set of dependencies (e.g., when data from two groups are analyzed similarly).

• Horizontal levels. All nodes on one level should have (more or less) the same
degree of abstraction.

Once you have chosen the optimal design, visit my homepage1 and download the
ZIP archive TutorialGMLTX.zip from the downloads section. Unpack its files into a
temporary folder and copy the LATEX style files com.braju.graphicalmodels.sty and
com.braju.pstricks.sty2 and the template GraphTemplate.tex to a preferred working

1http://sites.google.com/site/tomlodewyckx
2These style files were originally developed by Henrik Bengtsson

(http://www1.maths.lth.se/matstat/staff/hb/) and adapted by Michael Lee
(http://www.socsci.uci.edu/ ∼ mdlee/)
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2.1 Grid 2 CREATING A GRAPHICAL MODEL IN LATEX

directory. Now open the template with your LATEX editor3 and set the output profile to
[LATEX⇒ PS] or [LATEX⇒ PS ⇒ PDF]. Here you find five sections in the document that
correspond to different elements of the graphical model:

1. The grid is the reference frame, consisting of an orthogonal coordinate system.

2. The nodes are representing data and parameters in the model.

3. The arrows indicate dependencies between the nodes.

4. The plates take hierarchical structures into account.

5. The model equations define the full statistical model with the exact transforma-
tions and distributional assumptions.

In the subsections 2.1 to 2.5, we will discuss each element in detail and illustrate how
LATEX code is written in order to create the desired graphical model.

2.1 Grid

The grid is the orthogonal coordinate system that functions as the reference frame for all
elements in the graph. Distances in the grid are expressed in units, whereas one unit is set
to 14 millimeters4. The grid is defined with two lines of LATEX code.

\begin{pspicture}(minx,miny)(maxx,maxy)

\showgrid

• Grid display. The \showgrid command is used to display the grid. This is useful
as long as you are designing the graphical model: it helps you to choose the right
coordinates easily. Deactivate it once the graph is finished by commenting out the
command with the % symbol.

• Minimum and maximum grid values. The sets of coordinates (minx,miny)

and (maxx,maxy) specify respectively the minimum and maximum grid values on
the x-axis and y-axis. It is convenient to set (minx,miny) equal to (0,0) such that
they can be interpreted as the coordinates of the origin of the coordinate system.
Subsequently, (maxx,maxy) are to be interpreted as the width and heighth of the
grid. Once you have added nodes and plates to the graph (see Sections 2.2 and 2.3),
check again whether your grid is still large enough: elements far outside the grid
might fully or partly disappear from the graph.

3TeXnicCenter is popular freeware and is available at http://www.texniccenter.org
4The size of this basic unit is set in the \ppset command in the beginning of the template with

unit=14mm
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2.2 Nodes 2 CREATING A GRAPHICAL MODEL IN LATEX

2.2 Nodes

All observed variables and stochastic parameters are visually represented with nodes. Sev-
eral graphical properties of the nodes imply certain characteristics of the corresponding
quantities. A node is specified with two lines of code: the first line defines the basic visual
properties of the node, the second line defines the label that is associated to the node.
Options for the node (NodeOptions) and for the label (LabelOptions) can be specified
within the square brackets, seperated by commas, e.g., [option1=a,option2=b,...].

\rput(locx,locy){\GM@node[NodeOptions]{name}}

\GM@label[LabelOptions]{name}{label}

General

• Location. The set of coordinates (locx,locy) defines the horizontal and vertical
position of the node within the grid.

• Identification. name is substituted by a unique node name. When drawing arrows
between nodes, these names are necessary to identify the right nodes. For clarity, one
chooses the “textified” mathematical symbol, e.g., θ% is given the name ThetaPerc.
Spaces, special symbols and LATEX commands are not allowed in the node name.

• Label. label is substituted by the statistical symbol of the corresponding quantity
(activate the math environment using two $ signs if needed). This label will appear
inside the node.

Node options

• Node size. The nodeSize option defines the diameter of the node and is generally
set to 11 millimeters (nodeSize=11mm).

• Shading. The observed option is set to true (observed=true) when the quantity
is observed, such that this node is shaded. The observedColor option defines the
shading color and is generally set to light gray (observedColor=lightgray), which
is a bit lighter than the default color gray5. For unobserved nodes, these options are
not mentioned within the node options environment.

• Geometric form. For discrete or categorical quantities, the query option is set to
true (query=true) such that they are displayed as a square node. For continuous
quantities, this option is not specified and they are displayed as circular nodes.

5Colors from the LATEX palette are listed at http://en.wikibooks.org/wiki/LaTeX/Colors
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2.3 Arrows 2 CREATING A GRAPHICAL MODEL IN LATEX

Label options

• Correction of label position. It often happens that the label is not presented
exactly in the middle of the node, especially when that label contains indices. A
subtle correction of the position of the label in millimeters can be made with the
offset option (offset=?mm). The corrections are parallel to the x-axis, whereas
positive values move the label to the right and negative values move it to the left. If
needed, the direction of the movement can be changed using the angle option. The
rotation of the correction axis is expressed in degrees in counterclockwise direction
relative to the x-axis (e.g., angle=45 moves the label to the upper right corner for
positive correction values or to the lower left corner for negative correction values).

Fully determined child nodes

A somewhat more complex issue is how to create a double border for child nodes that
are fully determined by the value(s) of their parent node(s). Two nodes are created at the
same location: first the outer border as a node with a normal size of 11mm and then the
inner border as a node with a smaller size of 9 mm. In the basic structure of the code
below, the label is linked to the inner node because they have the same value for name (it
could as well be linked to the outer node without any problem).

\rput(locx,locy){\GM@node[nodeSize=11mm,...]{nameouter}}

\rput(locx,locy){\GM@node[nodeSize=9mm,...]{nameinner}}

\GM@label[...]{nameinner}{label}

2.3 Arrows

One of the goals of graphical modeling is to reveal dependencies in the model by looking at
the graph. An arrow from parent node to child node indicates that the value of the child
node depends on that parent node. An arrow is constructed with one line of code.

\ncline[arrows=->]{nameparent}{namechild}

• Identification. nameparent and namechild are substituted by the unique names
of the parent and child node, as specified when these nodes were created.

• Direction. The direction of the arrow is defined in the arrows option. To let
the arrow begin in the parent node and end in the child node (as is convenient in
graphical modeling) it is set equal to an arrow to the right (arrows=->). However, you
can always change the direction: from child to parent (arrows=<-) or bidirectional
(arrows=<->).

• Fully determined node. In case that either parent node or child node is a deter-
ministic node, be sure to choose the name of the outer node (to avoid that the arrow
will be drawn partly inside the node).
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2.4 Plates 2 CREATING A GRAPHICAL MODEL IN LATEX

• Arrow thickness. The arrowscale option within the \ppset command (in the
beginning of the template) specifies the thickness of the arrows. The default value is
set to 1.5 units (arrowscale=1.5) but can be easily changed when preferred.

2.4 Plates

Plates can visualize hierarchical structures in the data, where various independent, ex-
changeable quantities are assumed to be drawn from the same distribution. The exchange-
able nodes can be either data or parameters. A plate is defined with one line of LATEX
code:

\rput(orix,oriy){\GM@plate[options]{sizex}{sizey}{label}}

• Origin. The set of coordinates (orix,oriy) defines the location of the origin (the
lower left corner) of the plate.

• Size. The values of width and heighth define respectively the width and heighth
of the plate, implying that the upper right corner of the plate has coordinates
(orix+width,oriy+heighth)6.

• Label. label is substituted by a loop expression, (e.g., $i=1,\ldots,20$ in case
there are 20 exchangeable nodes). Each node label within the plate should contain
the index that is specified in this label.

• Position label. The exact location inside the plate is defined with the plateLabelPos
option. In graphical modeling, it is convenient to place the label in the bottom right
corner (plateLabelPos=br). The alternatives are the bottom left (bl), top right
(tr) and top left (tl) corner.

2.5 Model equations

The graphical model is not a model on itself but rather complementary to the exact model
equations. Therefore it is useful to add these equations to the graph. Each equation is
added with a single line of code.

\rput(locx,locy){\pnode{name}}\GM@label[options]{name}{label}

• Location. The set of coordinates (locx,locy) specify the location of a specific
equation line. For a nice layout of all equations, use the same value of locx for all
equations and vary the value of locy such that the equations have the same vertical
spacing between each other.

6This specification is different from the coordinate sets (minx,miny) and (maxx,maxy) for the grid,
where (maxx,maxy) can only be interpreted as width and heigth of the grid if (minx,miny) = (0,0)
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3 APPLICATION

• Identification. We explained earlier that it is important to identify the right nodes
such that arrows can be drawn appropriatly between these nodes. However, equation
identification is not that important. For each equation, name can be substituted with
the same word (e.g., equation).

• Label. label is substituted by the actual equation that will be written in the graph.
Use the math environment for mathematical symbols.

• Correction of label position. For subtle corrections of the location of the equation,
the offset and angle options can be used in exactly the same way as explained in
the subsection on creating nodes.

Commenting out the \showgrid command makes the grid disappear, so you have
your final graph. You have it available in postscript (PS) format, which can be trans-
formed into an encapsulated postscript format (EPS)7. EPS figures can be easily added to
LATEXdocuments.

3 Application

In this section, we introduce a subliminal priming study by Zeelenberg, Wagenmakers &
Raaijmakers (2002) and discuss how these data can be analysed with a Bayesian hierarchical
model. The corresponding graphical model is constructed step by step with parts of LATEX
code. If you are not interested in the theoretical background and the meaning of the model
and its parameters, just start with the subsection “Construction of the graphical model”.

3.1 Experimental design and data

Zeelenberg, Wagenmakers & Raaijmakers (2002) set up several studies to test whether
previous exposure to a stimulus would facilitate visual discriminability of that stimulus,
relative to a foil stimulus. To distinguish this effect from a pure bias effect as a result of
the prior study of the stimulus, the foil stimulus was also studied on forehand. We focus
on the third experiment that is reported in their paper.

74 subjects participated and 42 pairs of similar looking pictures were used as the visual
stimulus material (see an example in Figure 2). The critical within-subject manipulation
was realized in the study block. Participants were able to study half of the pairs and these
pairs belonged to the Study Both (SB) condition, whereas the other non-exposed pairs
belonged to the Study Neither (SN) condition. Then the test block followed, consisting of
42 trials with each trial corresponding to one of the 42 picture pairs. A trial started with
a short presentation of one picture of the pair for 40 ms, the “target”. The other picture
from that pair, the “foil”, was not presented. Then a two-alternative forced-choice task
followed: target and foil were presented together and the participant had to identify the

7This can be done using GSview, available for free at http://pages.cs.wisc.edu/∼ ghost/gsview/
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3.2 Hierarchical Bayesian model 3 APPLICATION

Figure 2: Example of a picture pair from the visual stimulus material.

target. For each subject, the test block resulted in a count of correct identifications for the
SB condition (KSB) and the SN condition (KSN) out of respectively NSB and NSN trials.
There were no missing data, so NSB = NSN = 21. In Figure 3, the proportions of successes
in the Study Both condition are plotted against the proportions of successes in the Study
Neither condition for all participants.

3.2 Hierarchical Bayesian model

The authors performed a paired t-test and found a significant condition effect: the per-
centage of correct trials was higher in the SB condition (74.7%) than in the SN condition
(71.5%), t(73) = 2.19, p < .05. This result was taken to support the hypothesis that prior
study leads to an improved visual discriminability. A new Bayesian hierarchical modeling
approach for this data was proposed (Lodewyckx, Lee & Wagenmakers, 2009). We will
discuss this model shortly and then build up the graphical model step by step. If you want
more background, you can find it in our manuscript.

The graphical model of interest is presented in Figure 4. The counts of correct iden-
tifications KSB,i and KSN,i for each participant i are assumed to be Binomial distributed.
The Binomial proportion parameters θSB,i and θSN,i (ranging from 0 to 1) were probit
transformed into φSB,i and φSN,i (ranging from -∞ to +∞)8. We are interested whether
participants score better in the SB condition than in the SN condition. In statistical terms,
we want to know whether φSB,i > φSN,i. Instead of modeling φSB,i as a free parameter,
we fix it to φSB,i = φSN,i + αi and model the difference parameter αi = φSB,i − φSN,i

as a free parameter. Now it is assumed that the parameters φSN,i and αi are Gaussian
distributed with hyperparameters µφ, σ2

φ, µα and σ2
α. The effect size for the parameter µα

can be derived as δ = µα/σα. The key parameter is δ, which is expected to be positive in
case of a subliminal learning effect without bias. The prior distributions are chosen to be
uninformative. The prior for µφ is truncated to the positive value domain because negative
values correspond to (unrealistic) performances under chance level.

8The probit transformation is the inverse cumulative Normal distribution function
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3.2 Hierarchical Bayesian model 3 APPLICATION
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Figure 3: Proportions of correct identifications of the 74 subjects in the Study Both and
Study Neither condition (Zeelenberg et al., 2002). A small amount of jitter is added to
disentangle overlapping observations.
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3.2 Hierarchical Bayesian model 3 APPLICATION

µφ σφ

δ

µα σα
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KSN,i

NSN,i

αi

φSB,i

θSB,i

KSB,i

NSB,i

i = 1, . . . , 74

KSN,i ∼ Binomial
(

θSN,i, NSN,i

)

θSN,i = Φ
(

φSN,i

)

φSN,i ∼ Normal
(

µφ, σ2
φ

)

KSB,i ∼ Binomial
(

θSB,i, NSB,i

)

θSB,i = Φ
(

φSB,i

)

φSB,i = φSN,i + αi

αi ∼ Normal
(

µα, σ2
α

)

µφ ∼ Normal(0,+∞)

(

0, 1
)

σφ ∼ Uniform
(

0, 10
)

µα = δ × σα

σα ∼ Uniform
(

0, 10
)

δ ∼ Normal
(

0, 1
)

Figure 4: Graphical model for the Bayesian hierarchical model for the subliminal learning
data.
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3.3 Construction of the graphical model 3 APPLICATION

3.3 Construction of the graphical model

In this section, the graphical model in Figure 4 will be constructed. Step by step, lines of
LATEX code are discussed for the different elements of the graphical model and the effect of
the code is illustrated visually in Figure 5. If you want to have a look at the code yourself,
open the file GraphZeelenberg.tex that you find in the ZIP file TutorialGMLTX.zip9.

0. Begin document

These lines of code remain unchanged, unless you would like to change the size of the
basic unit or the thickness of the arrows (within the \ppset command). However, it is
recommended to work with these default settings.

\documentclass{article}

\usepackage{pst-all}

\usepackage{com.braju.graphicalmodels}

\catcode‘\@=11%

\pagestyle{empty}

\begin{document}

\TeXtoEPS

\psset{unit=14mm,arrowscale=1.5}

\SpecialCoor

1. Grid

As the graphical model contains many nodes and it has approximatly the same width
and heighth, we choose a grid of 10 × 10 units (see Figure 5.A).

\begin{pspicture}(0,0)(10,10)

\showgrid

2. Nodes

There are several nodes which are fully determined by the values of their parents: θSB,
θSN , φSB and µα. We start with defining their outer nodes in the first paragraph of code.
In the second paragraph, the nodes for the hierarchical parameters at the top of the graph
outside the plate are created. In the third and fourth paragraph, the nodes within the
plate for respectively the SN condition and the SB condition are defined. Notice that for
every node there is a correction of the label position with the offset option. The result
is shown in Figure 5.B.

9http://sites.google.com/site/tomlodewyckx
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3.3 Construction of the graphical model 3 APPLICATION

\rput(4.0,4.6){\GM@node[nodeSize=11mm]{phiSB_outer}}

\rput(4.0,3.4){\GM@node[nodeSize=11mm]{thetaSB_outer}}

\rput(1.5,3.4){\GM@node[nodeSize=11mm]{thetaSN_outer}}

\rput(3.3,7.3){\GM@node[nodeSize=11mm]{mualpha_outer}}

\rput(1.0,7.3){\GM@node[nodeSize=11mm]{muphiSN}}

\GM@label[offset=-1.5mm]{muphiSN}{$\mu_{\phi}$}

\rput(2.0,7.3){\GM@node[nodeSize=11mm]{sdphiSN}}

\GM@label[offset=-1.5mm]{sdphiSN}{$\sigma_{\phi}$}

\rput(4.0,8.3){\GM@node[nodeSize=11mm]{delta}}

\GM@label[offset=-0.5mm]{delta}{$\delta$}

\rput(3.3,7.3){\GM@node[nodeSize=9mm]{mualpha}}

\GM@label[offset=-1.5mm]{mualpha}{$\mu_\alpha$}

\rput(4.7,7.3){\GM@node[nodeSize=11mm]{sdalpha}}

\GM@label[offset=-1.5mm]{sdalpha}{$\sigma_\alpha$}

\rput(1.5,4.6){\GM@node[nodeSize=11mm]{phiSN}}

\GM@label[offset=-3.8mm]{phiSN}{$\phi_{SN,i}$}

\rput(1.5,3.4){\GM@node[nodeSize=9mm]{thetaSN}}

\GM@label[offset=-3.8mm]{thetaSN}{$\theta_{SN,i}$}

\rput(1.5,2.2){\GM@node[nodeSize=11mm,observed=true,

observedColor=lightgray,query=true]{KSN}}

\GM@label[offset=-4.5mm]{KSN}{$K_{SN,i}$}

\rput(1.5,1.0){\GM@node[nodeSize=11mm,observed=true,

observedColor=lightgray,query=true]{NSN}}

\GM@label[offset=-4.5mm]{NSN}{$N_{SN,i}$}

\rput(4.0,5.8){\GM@node[nodeSize=11mm]{alpha}}

\GM@label[offset=-1.5mm]{alpha}{$\alpha_i$}

\rput(4.0,4.6){\GM@node[nodeSize=9mm]{phiSB}}

\GM@label[offset=-3.8mm]{phiSB}{$\phi_{SB,i}$}

\rput(4.0,3.4){\GM@node[nodeSize=9mm]{thetaSB}}

\GM@label[offset=-3.8mm]{thetaSB}{$\theta_{SB,i}$}

\rput(4.0,2.2){\GM@node[nodeSize=11mm,observed=true,

observedColor=lightgray,query=true]{KSB}}

\GM@label[offset=-4.5mm]{KSB}{$K_{SB,i}$}

\rput(4.0,1.0){\GM@node[nodeSize=11mm,observed=true,

observedColor=lightgray,query=true]{NSB}}

\GM@label[offset=-4.5mm]{NSB}{$N_{SB,i}$}

3. Arrows

The third step consists of defining the arrows with one line of code each, connecting
parent nodes to child nodes. In case at least one of the nodes is a deterministic nodes
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3.3 Construction of the graphical model 3 APPLICATION

(consisting of an inner and outer node), the outer node is specified. The resulting graphical
model after adding the code below is presented in Figure 5.C.

\ncline[arrows=->]{phiSN}{thetaSN_outer}

\ncline[arrows=->]{thetaSN_outer}{KSN}

\ncline[arrows=->]{NSN}{KSN}

\ncline[arrows=->]{phiSB_outer}{thetaSB_outer}

\ncline[arrows=->]{thetaSB_outer}{KSB}

\ncline[arrows=->]{NSB}{KSB}

\ncline[arrows=->]{phiSN}{phiSB_outer}

\ncline[arrows=->]{alpha}{phiSB_outer}

\ncline[arrows=->]{muphiSN}{phiSN}

\ncline[arrows=->]{sdphiSN}{phiSN}

\ncline[arrows=->]{mualpha_outer}{alpha}

\ncline[arrows=->]{sdalpha}{alpha}

\ncline[arrows=->]{delta}{mualpha_outer}

\ncline[arrows=->]{sdalpha}{mualpha_outer}

4. Plates

To account for the hierarchical structure (the 74 participants), a plate is added. The
plate should comprise all quantities with an index i: KSN,i, NSN,i, θSN,i, φSN,i, KSB,i,
NSB,i, θSB,i, φSB,i and αi. The label is placed in the bottom right corner and the index i
covers the 74 exchangeable replicates (see Figure 5.D for the result).

\rput(.75,0.1){\GM@plate[plateLabelPos=br]{4.0}{6.4}{$i=1,\ldots,74$}}

5. Model equations

Finally, the full model equations should clarify the exact relations between parent and
child nodes. Notice that name has been set to the word equation for each equation, as the
identification of the equation lines is not important. All equations are written in the math
environment. After adding the equation lines, the graphical model looks like Figure 5.E.

\rput(5.5,7.6){\pnode{equation}}\GM@label{equation}

{$K_{SN,i} \sim \mathrm{Binomial} \bigl( \theta_{SN,i},N_{SN,i} \bigr)$}

\rput(5.5,6.8){\pnode{equation}}\GM@label{equation}

{$\theta_{SN,i} = \Phi \bigl( \phi_{SN,i} \bigr)$}

\rput(5.5,6.2){\pnode{equation}}\GM@label{equation}

{$\phi_{SN,i} \sim \mathrm{Normal} \bigl(\mu_\phi,\sigma_\phi^2 \bigr)$}

\rput(5.5,5.6){\pnode{equation}}\GM@label{equation}

{$K_{SB,i} \sim \mathrm{Binomial} \bigl( \theta_{SB,i},N_{SB,i} \bigr)$}

\rput(5.5,5.0){\pnode{equation}}\GM@label{equation}

{$\theta_{SB,i} = \Phi \bigl( \phi_{SB,i} \bigr)$}
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3.3 Construction of the graphical model 3 APPLICATION

\rput(5.5,4.4){\pnode{equation}}\GM@label{equation}

{$\phi_{SB,i} = \phi_{SN,i} + \alpha_i$}

\rput(5.5,3.8){\pnode{equation}}\GM@label{equation}

{$\alpha_i \sim \mathrm{Normal} \bigl(\mu_\alpha, \sigma_\alpha^2 \bigr)$}

\rput(5.5,3.2){\pnode{equation}}\GM@label{equation}

{$\mu_\phi \sim \mathrm{Normal}_{(0,+ \infty)} \bigl( 0,1 \bigr)$}

\rput(5.5,2.6){\pnode{equation}}\GM@label{equation}

{$\sigma_\phi \sim \mathrm{Uniform} \bigl( 0,10 \bigr)$}

\rput(5.5,2.0){\pnode{equation}}\GM@label{equation}

{$\mu_\alpha = \delta \times \sigma_\alpha$}

\rput(5.5,1.4){\pnode{equation}}\GM@label{equation}

{$\sigma_\alpha \sim \mathrm{Uniform} \bigl( 0,10 \bigr)$}

\rput(5.5,0.8){\pnode{equation}}\GM@label{equation}

{$\delta \sim \mathrm{Normal} \bigl( 0,1 \bigr)$}

6. End document

The final three lines of code are closing the document. Now you can also comment out
the \showgrid command in the grid section. The graphical model is ready and looks like
the one in Figure 5.F.

\end{pspicture}

\endTeXtoEPS

\end{document}
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Figure 5: Different stages in the construction of the graphical model.
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